Dynamics of vortices for the Complex Ginzburg-Landau equation
نویسنده
چکیده
We study a complex Ginzburg-Landau equation in the plane, which has the form of a Gross-Pitaevskii equation with some dissipation added. We focus on the regime corresponding to well-prepared unitary vortices and derive their asymptotic motion law. 2000 Mathematics Subject Classification: 35B20,35B40,35Q40,82D55.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملGinzburg-Landau vortex dynamics with pinning and strong applied currents
We study a mixed heat and Schrödinger Ginzburg-Landau evolution equation on a bounded two-dimensional domain with an electric current applied on the boundary and a pinning potential term. This is meant to model a superconductor subjected to an applied electric current and electromagnetic field and containing impurities. Such a current is expected to set the vortices in motion, while the pinning...
متن کاملDynamics for Ginzburg-landau Vortices under a Mixed Flow
We consider a complex Ginzburg-Landau equation that contains a Schrödinger term and a damping term that is proportional to the time derivative. Given well-prepared initial conditions that correspond to quantized vortices, we establish the vortex motion law until collision time.
متن کاملUnstable manifolds and Schrödinger dynamics of Ginzburg-Landau vortices
The time evolution of several interacting Ginzburg-Landau vortices according to an equation of Schrödinger type is approximated by motion on a finite-dimensional manifold. That manifold is defined as an unstable manifold of an auxiliary dynamical system, namely the gradient flow of the Ginzburg-Landau energy functional. For two vortices the relevant unstable manifold is constructed numerically ...
متن کامل